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Abstract. The magnetic properties of the Ising mixture of a site model of A and B atoms, of 
which the magnetic moments, spins, concentrations and exchange energies are p ~ ,  SA, 
SB, PA, p ~ ,  JAA, JAB and JBB. are investigated. As examples, mixtures with S = 1 and S = 1, 
the former of which has the anisotropy D, are studied by the distribution function method in 
the Bethe approximation. The critical temperature (phase boundary between the 
paramagnetic @)-ferromagnetic (F) and paramagnetic-antiferromagnetic (AF) phases), the 
energy and the zero-field susceptibility in the paramagnetic phase are obtained. They are 
expressed in terms of generalised Brillouin functions as a natural extension of the S = $king 
model and the classical Heisenberg model. 

1. Introduction 

The magnetic properties of random systems have attracted considerable interest in 
recent years, and in particular the following works are mentioned in relation to the 
present work: Brout (1959)-distinction between quenched and annealed systems; 
Behringer (1957), Morgan and Rushbrooke (1961)-high-temperature and low- 
concentration expansions of dilute systems; Katsura and Tsujiyama (1966)-exact 
susceptibility and specific heat of the quenched and annealed one-dimensional dilute 
S = $ Ising systems; Matsubara ef a1 (1973)-magnetisation processes of the one- 
dimensional dilute S = $ Ising ferromagnetic (F) and antiferromagnetic (AF) systems 
(see also Wortis (1974); Matsubara and Yoshimura (1973)-the one-dimensional 
dilute king system with higher spin; Matsubara (1974a), Katsura and Matsubara 
( 1 9 7 4 ) - ~ - ~ ~  binary mixture of the S = 4 king site and bond systems, especially the 
paramagnetic (P) susceptibility and the phase boundary (see also Eggarter and Eggarter 
(1977), who also discussed the low-temperature mixed phase); Katsura (1975)- 
classical Heisenberg and planar models (see also Smith (1971), Tonegawa er a1 (1975) 
and Thorpe (1975) for the one-dimensional case only); Edwards and Anderson (1975), 
Matsubara and Sakata (1976)-existence of the spin glass phase (glass-like phase), the 
former in the infinitely long-range Gaussian bond mixture and the latter in the 
short-range binary bond mixture (a similar phase diagram to that of the latter was also 
obtained by Jayaprakash er a1 (1976)); Matsubara (1974b, c)-F-AF mixture by the 
distribution function method (see also Katsura (1977c), Katsura and Fujiki 1979); 
Katsura (1976, 1977b)-F-AF mixture by the low-field expansion and cumulant 
expansion methods; Sherrington and Kirkpatrick (1975), Katsura (1977a)-alternative 
derivation of the spin glass for the continuous distribution; Katsura and Fujiki (1979), 
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thermdynamic properties of the binary mixture; Kudb et a1 (1978)-one-dimensional 
F-AF binary mixture of S = 1 and S = $.t 

In this paper we study a mixture of A and B atoms with spins SA = 1, SB = 1 and 
concentrations PA, PB in two and three dimensions as an example of a system with 
different spin values. The exchange energies are denoted by JAA, JBB and J A B ,  each of 
which is either ferromagnetic or antiferromagnetic, and the anisotropy D is associated 
with A. The system is investigated by generalising the method used by Katsura and 
Fujiki (1979) and Kudb er a1 (1978, referred to hereafter as KMK). The distribution 
functions of the effective fields and effective anisotropies are introduced to reflect the 
fact that the random mixture has different expected spin values on each lattice site. The 
integral equation for the distribution function is derived, and the equations for the first 
and second moments of the effective fields are obtained. Using these relations, we 
obtain the energy and the susceptibility in the paramagnetic phase. The phase 
boundaries between P-F and P-AF phases are determined. The physical quantities are 
shown to be a generalisation of the S = f Ising model and the classical Heisenberg model 
and are expressed in terms of (generalised) Brillouin functions. Numerical calculations 
of these boundaries together with the phase boundary between the spin glass phase and 
the paramagnetic phase will be given in a subsequent paper. 

1 2. Bethe approximation for the random mixture with S = 1 and S = 2 

We consider a cluster consisting of a central atom 0 under an external magnetic field H 
with its z nearest-neighbour atoms under an effective field HT. An atom is either 
A(S = 1) or B(S = f). The Hamiltonian of the cluster is 

z z z 

% = -2 C J ~ ~ s ~ s ~  - p o ~ s 0  - A ~ S ~  - p i ~ T ~ i  - C A :s;, 
i = l  i = l  i = 1  

(2.1) 

where s = 1 , 0  or -1 for the A atom and f or -1 for the B atom, Joi = JAA, JBB or JAB, 
p = or p ~ ,  A = A A  or A B  ( =  0) represents the anisotropy. Introducing 

~ @ J A A  = KAA, PJAB = KAB, PJBBI 2 = KBB, 

PFAH = CA, PAA= DA, 

PCLBHI 2 = CB, P A B I  4 = DB (for central spin), 

&AH? =LA,, P A  :i = MAi, 

PCLBHTI 2 = LBj,  

S = s for the A atom, S = 2s for the B atom, 

PA g j  f 4 = M B ~  (for neighbouring spin), 
and 

we have 

-P%= f KoiSoSi + CSo+ DS; + f Lis, + f MiS:, (2.2) 
i = l  i = l  i = l  

t There is a problem as to whether the properties of spin systems of higher spins can be expressed in a unified 
way. The problem is partly answered in the molecular field and random phase approximations (Callen and 
Shitrikman 1965) by using the Brillouin function. In the exact solution and the Bethe approximation, 
however, such a property is not yet known. One of the motivations of the present study is to find a simple and 
general expression for the physical quantities of higher-spin systems in a unified way. 
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where Koi = KAA, KBB or KAB, C = CA or CB, D = D A  or D B  ( =  0), L, = LAi or LBi, 
Mi =  MA^ or (=O) for a given configuration of the cluster. The effective field L; and 
the effective anisotropy Mi will be determined self-consistently so that they take into 
account the effect of the outer spins. The density matrix of the cluster for a given 
configuration of neighbouring spins A and B (the numbers of A and B are k and z - k 
respectively) is given by 

The partial trace of pi gives 

tripi = 1 +2uT’ cosh(KojSo+ Li) (2.4) 

for the case where the ith spin is A, and 

tripi = 2 cosh(KoiSo + Li) (2.5) 
for the case where the ith spin is B, where ui = exp(-Mi). Equations (2.3) and (2.4) can 
be rewritten 

for the central A spin, 

for the central A spin, and 

for the central B spin. 

reduced except at the central spin 0 and a neighbouring spin q, is given by 
Thus the reduced density matrix of the cluster of the given configuration, tr” p, 

tr” p = constant x exp(KoqSoSq + LqSq +MqSz + LbSo + MbS:), (2.9) 
where 

(2.10) 

(2.1 1) 
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for the central spin A, and 

for the central spin B. 
Here Li  and M i  are the effective field and effective anisotropy at the central spin 

resulting from the effects of the neighbouring spins 1, 2, . . . , 4-1,  q + l ,  . . . , z. 
k' = k - 1 or k when the 4th spin is Aor  B respectively. From (2.9) we see that if L, = Lb 
and M, = M i  then (So) = (S,). We require the averages (see Katsura and Fujiki 1979). 
The averages are carried out over the distribution functions gA(lA, U )  (IA = tanh LA, 
U = e-M) and (IB = tanh L B )  and over all neighbouring configurations of A and B 
spins for given concentrations pA(=p) and pB = 1 - p .  

3. The integral equation for gA(lA,  U )  and g B ( l B )  

First we consider the paramagnetic and the ferromagnetic phases. The probability that 
tanh LA has a value between lA and 1~ + dlA and ewM has a value between U and U +du 
is denoted by gA(lA, U )  dlA du, and the probability that tanh LB has a value between IB 
and lB+dlB by &(le) dB. The distribution functions gA(/A, U )  and gB(lB) are deter- 
mined by the condition that the distribution of L A ,  and of LX,, that of L B ,  and of LBfq, 
and that of U, and U; are the same, respectively. The integral equations for &(/A, U )  
and gB(IB) read 

and 
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(cf Matsubara 1974a, Katsura and Fujiki 1979, KMK 1978). 

iterative method and the solution becomes a multiple series. 

is the delta function at I = 0. This is the paramagnetic solution, and we have 

The coupled integral equations (3.1) and (3.2) for gA and gB can be solved by the 

In the case with no magnetic field, these exists a solution in which the distribution of 1 

gB(I) = S(1) ,  gA(1, U )  = S(l)gZ(u), (3.3) 

(3.4) 
In particular in the one-dimensional case the solution reads 

0 0 .  

gz(u) = (1 - p )  1 plS(u -U(;)), 
i = O  

where 
= l/cosh KAB, 

(3.5) 

~ ( ~ + ~ ) = e - ~ [ ( 2 + u ( " ) / ( 2  cosh KAA+u(~))]  ( i=O,1,2 ,... ). (3.6) 

The integral equations (3.1) and (3.2) have different solutionsfrom (3.3). One of the 
solutions describes the ferromagnetic state. The antiferromagnetic state is described by 
a solution of the generalisation of the integral equations (3.1) and (3.2) by taking the 
sublattice structure into consideration (cf Matsubara 1974a, Katsura 1977b, 0 5 ) .  

 SA^) and xz = (Sii) can be used as indepen- 
dent variables of gA. The integral equation of gA(X1, XZ) for the one-dimensional system 
is given and discussed in KMK. 

Instead of IA and U, the averages x1 

For the pure B case ( p  = 0) the integral equation (3.2) has a solution 

gB(I) = a(1- lB), (3.7) 

LB = CB + (Z - 1) tanh-'(tanh KBB tanh LB). (3.8) 

gA(k U)=S(I-1A)a(U = u0)t (3.9) 

where IB(=tanh LB) is determined by 

For the pure A case ( p  = 1) the integral equation (3.1) has a solution 

where IA(=tanh LA) and uo are determined by 

U0+2 COSh(KAA+LA) 
uo+2 COSh(-KAA+LA) 
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In the case of the antiferromagnetic phase, the lattice is divided into sublattices a 
and p, and we consider gA(lz), gB(Ii), gA(1;) and gB(lE). In (3.1) and (3.2) I’ on the 
right-hand side is replaced by l o l ( l p )  and that on the left-hand side by l p ( l a ) ,  and the 
equations form a closed set. 

4. Theenergy 

+ (1 -~)(CBSB),  
where 

(SASL) 

2[eK cosh(,!, + L‘) - e-K cosh ( L  - L’)] =I (2[eK cosh(L+L’)+e-K cosh(L-L’)]+2u C O S ~ L + ~ U ’ C O S ~ L ’ + U U ’  

(4.1) 

eK cosh(L + L’) - e-K cosh(L - L’) 
= I (eK cosh& + L’) + e-K cosh& - L’) + U cosh L’ 

X gA(/, U)gB(/’) dl du dl‘, (4.3) 

(4.4) 
eK cosh(L + L’) - e-K 
eK cosh(L+ L’) + e-K (SBSL) = 5 ( 

and (CS) is given in (5 .5 ) .  
In the paramagnetic region in zero field these expressions become 

and 

where B is the (generalised) Brillouin function defined by 

Bl(x ,  U )  = 2 sinh x / ( u  + 2 cosh x ) ,  BlI2(x) = tanh x .  (4.8) 
Special cases of p~ = 1, PA = 1 and H = 0 in the one-dimensional case agree with the 
known results for the pure case of S = (Kramers and Wannier 1941), S = 1 (Katsura 
and Tsujiyama 1966, Suzuki et a1 1967) and KMK (1978) respectively. The energy in 
the paramagnetic phase is independent of z in the Bethe approximation. 

5. The susceptibility 

First we consider the uniform susceptibility. The partition function of a cluster for a 
given configuration, which consists of a central spin A with k nearest neighbours A and 



Random mixture of Ising systems 2093 

(5.1) 

and 

The magnetisation of the central spin averaged over all configurations is 

In the low-field limit in the paramagnetic phase, where L A +  0 and LB + 0 (M # 0), the 
first argument of B1 in (5.3) is 

and the second argument of B1 in (5.3) is 
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Noting that 

1 U + 2 cosh(K +L) 
-In( ) -*Bl(K, U)L 2 U +2 cosh(-K +L) (5 .8 )  

for L + 0, we have from (2.10), (2.11) and (2.12) 

k '  Ul+2 1 
i = i  ui +2 cosh KAA (cosh KAB)'-~'' 

U :  =e-D n 
i # q  

Since Bl(x,  y )  = 2x/(y +2) for x + 0, we have from (5.3) and (5.4) 

(5.11) 

Now we carry out the average over all possible configurations of the clusters. The 
distribution functions gA and gB are regarded as independent of the site. Then the 
summations in (5.9)-(5.13) are replaced by the average value multiplied by the number 
of terms (k '  or z - k ' ) .  For example 

~ ~ ~ ~ , i + q  BI(KAA, Ui)LAi 

(5.14) 

Here we have approximated B1(K, U )  = Bl(k ,  ii). 
Then the requirements Lq = L: and iiq = 2 are transformed into 

- 
L A =  CA+ (Z - l)pBi(KAA, E)K+ (Z - 1)(1 - ~ ) B ~ , z ( K A B ) ~ ,  (5.15) 



The zero-field susceptibility is given from (5.12H5.16) by 

where 

Here we used 

(5.17) 

(5.18) 

(") kpk(l  - p ) z - k  = zp. 
k=O k 

Hence 

The susceptibility in the paramagnetic phase is given by (5.17) with (5.20), i.e. 

In particular, the critical temperature is given by 

(5.22) 

where ii is determined from (5.16). We have assumed that the transition is second 
order. 

In the case in which we consider the sublattice structure of the lattice, the left-hand 
sides of equations (5.1)-(5.7), (5.9), (5.10), (5.12), (5.13), (5.15), (5.19) and (5.20) are 
regarded as the ones with CY@), and the right-hand sides of these equations with  CY). 
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Two sets of equations (5.15) are decoupled by a similarity transformation as in Katsura 
et a1 (1979), and the uniform and staggered susceptibility obtained. The former is the 
same as in equations (5.21) and (5.22), and the latter has the same form but the signs of 
KAA, KBB and K A B  are reversed. Equations (5.21) and (5.22) are generalisations of the 
corresponding results for the Ising mixture of S = and for the classical Heisenberg 
mixture (Katsura and Matsubara 1974, Katsura 1975). The susceptibility in the pure 
limit pA = 1 in the one-dimensional case, 

agrees with known results (Katsura and Tsujiyama 1966, Suzuki et a1 1967). The 
critical temperature for PA = 1 for arbitrary z is given by B1(K,  U )  = l / ( z  - l ) ,  i.e. 

2[2(2 - 1) tanh(K/2) - 1 - tanh2(K/2)] 
1 - tanh2(K/2) 

e 

(5.24) 

The case D = 0 agrees with known results (Obokata and Oguchi 1968). 

(5.22), we obtain the critical temperature in the molecular field approximation: 

2kTC/z = ${$JAAPA + JBBPB f [($JAAPA -JBBPB)’ + ~ ~ B P A P B I ~ ” } .  

When we approximate B l I 2 ( K )  - K and B1(K,  U )  - $K, and replace z - 1 by z in 

(5.25) 

By considering the staggered susceptibility, the NCel temperature is obtained from 
equations (5.22) and (5.25) after replacing K by -K. 

In the one-dimensional antiferromagnetic mixture JAA C 0, JBB C 0, JABS 0 (ZO), 
the susceptibility diverges for T + 0, except at pA = 1 or pB = 1 (Matsubara 1974b) or 

x/N-(pf -p;/4)p(l-p)lkT. (5.26) 

F A =  FB/2. 

6.  Conclusions 

The magnetic properties of a random Ising model with S = 1 and S = f, in which the 
former has anisotropy D, were investigated using the Bethe approximation and 
distribution function methods. The energy, the uniform and staggered susceptibilities 
in the paramagnetic phase, and the phase boundaries between P--F and P-AF phases 
were obtained. 

The result holds exactly in the one-dimensional system and reproduces the results of 
KMK (1979). Our method gives a generalisation of the S = $ king model and the 
classical Heisenberg model. The properties of a random mixture of Ising systems with 
general higher spins are expected to be expressed in terms of generalised Brillouin 
functions in a similar way. The discussion on the spin glass and mixed phases will be 
published in the near future together with numerical calculations for the phase 
boundaries between P-F, P-AF and P-spin glass phases. 
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